Diabetic cardiomyopathy represents severe heart complications, and is the leading cause of morbidity and mortality among patients with diabetes. Although a few microRNAs (miRNAs) have been implicated in diabetes-related complications, a functional association between miRNAs and cardiac dysfunction in diabetic cardiomyopathy remains to be demonstrated. Our results show that miR-483-3p is upregulated in streptozotocin-induced diabetic mice, and cultured cardiomyocytes mimicking hyperglycemia. Overexpressing miR-483-3p in transgenic mice with diabetes mellitus (DM) exacerbated cardiomyocyte apoptosis by transcriptionally repressing insulin growth factor 1 (IGF1). Therefore, we have uncovered a novel signaling pathway, involving miR-483-3p-IGF1, that promotes myocardial cell apoptosis under high blood-glucose condition. Further, our study indicates that miR-483-3p could be a potential therapeutic target for managing diabetes-associated heart complications.
Keywords: Apoptosis; Diabetic cardiomyopathy; IGF1; MicroRNA.
Copyright © 2016 Elsevier Inc. All rights reserved.