Thyroid carcinoma is the most common endocrine neoplasm, with the highest mortality rate of all the endocrine cancers. Among the endocrine malignancies, ~80% are papillary thyroid carcinomas (PTCs). In the initiation and progression of this tumor, genetic alterations in the mitogen-associated protein kinase pathway, including RAS point mutations, RET/PTC oncogene rearrangements and BRAF point mutations, play an important role, particularly in deciding targeted therapy. In the present study, a small population of thyroid tumor cells, known as tumor spheres, were isolated and characterized from PTC surgical samples. These spheres can be expanded indefinitely in vitro and give rise to differentiated adherent cells when cultivated in differentiative conditions. The present study showed by reverse transcription-polymerase chain reaction and flow cytometric analysis that the undifferentiated PTC cells exhibited a characteristic antigen expression profile of adult progenitor/stem cells. The cells were more resistant to chemotherapeutics, including bortezomib, taxol, cisplatin, etoposide, doxorubicin and vincristine, than differentiated PTC cells and the majority possessed a quiescent status, as revealed by the various cell cycle characteristics and anti-apoptotic protein expression. Such advances in cancer thyroid stem cell biology may provide relevant information for future targeted therapies.
Keywords: cancer stem cells; chemoresistance; differentiation; papillary thyroid carcinoma; tumor spheres.