Decadal drought deaccelerated the increasing trend of annual net primary production in tropical or subtropical forests in southern China

Sci Rep. 2016 Jun 30:6:28640. doi: 10.1038/srep28640.

Abstract

Previous investigations have identified that the effects of climate change on net primary production (NPP) of global forests have varied both spatially and temporally, and that warming has increased the NPP for many forests. However, other factors, such as available soil water for plant growth, could limit these incremental responses to warming. In our investigation we have quantified the responses of NPP of tropical or subtropical forests in southern China to warming and drought stress over the past three decades (1981 to 2012) using data from five forest research stations and satellite measurements. NPP, mean annual temperature (MAT) and annual days without rainfall showed an increase of 0.076 g C m(-2) a(-2) (standardized), 0.057 °C a(-1) (standardized) and 0.067 d a(-1) (standardized) during the study period, respectively. However, incremental NPP was deaccelerated at a rate of approximately 20.8% per decade. This deacceleration was primarily caused by a decrease in available soil water which resulted from warming (mainly occurring in winter and autumn) and the changes in rainfall pattern. The result indicates that intensifying drought stress would limit future increases of forest NPP in southern China.

Publication types

  • Research Support, Non-U.S. Gov't