Excitonic solar cells based on aligned or unaligned networks of nanotubes or nanowires offer advantages with respect of optical absorption, and control of excition and electrical carrier transport; however, there is a lack of predictive models of the optimal orientation and packing density of such devices to maximize efficiency. Here-in, we develop a concise analytical framework that describes the orientation and density trade-off on exciton collection computed from a deterministic model of a carbon nanotube (CNT) photovoltaic device under steady-state operation that incorporates single- and aggregate-nanotube photophysics published earlier (Energy Environ Sci, 2014, 7, 3769). We show that the maximal film efficiency is determined by a parameter grouping, α, representing the product of the network density and the effective exciton diffusion length, reflecting a cooperativity between the rate of exciton generation and the rate of exciton transport. This allows for a simple, master plot of EQE versus film thickness, parametric in α allowing for optimal design. This analysis extends to any excitonic solar cell with anisotropic transport elements, including polymer, nanowire, quantum dot, and nanocarbon photovoltaics.