Extracellular matrix metalloproteinase inducer (CD147/BSG/EMMPRIN)-induced radioresistance in cervical cancer by regulating the percentage of the cells in the G2/m phase of the cell cycle and the repair of DNA Double-strand Breaks (DSBs)

Am J Transl Res. 2016 Jun 15;8(6):2498-511. eCollection 2016.

Abstract

Our preliminary study found that CD147 is related to radioresistance and maybe an adverse prognostic factor in cervical cancer. To date, the mechanisms underlying CD147-induced radioresistance in cervical cancer remain unclear. In the present study, we investigated the mechanisms by which CD147 affects radiosensitivity in cervical cancer both in vitro and in vivo. In this study, the clonogenic assay showed that radiosensitivity was significantly higher in the experimental group (the CD147-negative cell lines) than in the control group (the CD147-positive cell lines). After radiotherapy, the residual tumour volume was significantly lower in the experimental group. FCM analysis showed the cells percentage in the G2/M phase of the cell cycle were significantly higher in the CD147-negative group than in the control group. However, there was no significant difference in terms of apoptosis. The expression of gamma-H2A histone family, member X (γH2AX) was dramatically elevated in the CD147-negative cell lines after irradiation, but the expression of ataxia-telangiectasia mutated (ATM) was not different between the two groups. WB analysis did not show any other proteins relating to the expression of CD147. In conclusion, it is likely that CD147 regulates radioresistance by regulating the percentage of the cells in the G2/M phase of the cell cycle and the repair of DNA double-strand breaks (DSBs). Inhibition of CD147 expression enhances the radiosensitivity of cervical cancer cell lines and promotes post-radiotherapy xenograft tumour regression in nude mice. Therefore, CD147 may be used in individualized therapy against cervical cancer and is worth further exploration.

Keywords: Cervical cancer; DNA double-strand breaks; extracellular matrix metalloproteinase inducer; radiosensitivity.