Employing low-temperature barriers to achieve strain-relaxed and high-performance GaN-based LEDs

Opt Express. 2016 May 30;24(11):11885-96. doi: 10.1364/OE.24.011885.

Abstract

The epitaxial structure design of low-temperature barriers has been adopted to promote strain relaxation in multiple quantum well (MQWs) and achieve high-efficient GaN-based light-emitting diodes (LEDs). With these barriers, the relaxation value of wells increases from 0 to 4.59%. The strain-relaxed mechanism of low-temperature barriers is also discussed. The LED chip with the barriers grown at the TMIn flow of 75 sccm and the growth temperature of 830 °C has an optimal strain relaxation value of 1.53% in wells, and exhibits the largest light output power of 63.83 mW at the injection current of 65 mA, which is higher than that of conventional LED (51.89 mW) by 23%. In-depth studies reveal that the optimal low-temperature barriers remarkably promote the strain relaxation in wells without forming large density of crystalline defects. This achievement of high-efficiency LEDs sheds light on the future solid-state lighting applications.