CD47 is overexpressed in many human cancers, its level positively correlates with tumor invasion and metastasis. However, it is largely unknown whether CD47 overexpression drives metastasis and how CD47 lead to tumor metastasis in non-small cell lung cancer (NSCLC). In this study, we analyzed NSCLC specimens and cell lines, and revealed that CD47 is expressed at a higher level than in tumor-free control samples. Furthermore, increased CD47 expression correlated with clinical staging, lymph node metastasis and distant metastasis. In order to understand the molecular mechanisms underlying CD47 functions, we applied both gain-of-function and loss-of-function approaches in cell lines. The siRNA-mediated downregulation of CD47 inhibited cell invasion and metastasis in vitro, while the overexpression of CD47 by plasmid transfection generated opposite effects. In vivo, CD47-specific shRNA significantly reduced tumor growth and metastasis. On the molecular level, the expression of CD47 correlated with that of Cdc42, both in cell lines and NSCLC specimens. The inhibition of Cdc42 attenuates the invasion and metastasis of CD47-overexpressing cells. These results indicate that Cdc42 is a downstream mediator of CD47-promoted metastasis. Our findings provide first evidence that CD47 is an adverse prognostic factor for disease progression and metastasis, and a promising therapeutic target for NSCLC.