Objective: Activation of the inflammasome pathway in macrophages results in the secretion of 2 potent proinflammatory and proatherogenic cytokines, interleukin (IL)-1β, and IL-18. Atherosclerotic lesions are characterized by the presence of various endogenous activators of the NLR family pyrin domain containing 3 (NLRP3) inflammasome, including cholesterol crystals and extracellular ATP. The aim of this study was to comprehensively characterize the expression of inflammasome pathway components and regulators in human atherosclerotic lesions.
Approach and results: Twenty human coronary artery RNA samples from 10 explanted hearts were analyzed using an inflammasome pathway-focused quantitative polymerase chain reaction array. Advanced atherosclerotic plaques, when compared with early-to-intermediate lesions from the same coronary trees, displayed significant upregulation of 12 target genes, including the key inflammasome components apoptosis-associated speck-like protein containing a CARD domain, caspase-1, and IL-18. Immunohistochemical stainings of the advanced plaques revealed macrophage foam cells positive for NLRP3 inflammasome components around the necrotic lipid cores. The polymerase chain reaction array target p38δ mitogen-activated protein kinase was upregulated in advanced plaques and strongly expressed by lesional macrophage foam cells. In cultured human monocyte-derived macrophages, the p38δ mitogen-activated protein kinase was activated by intracellular stress signals triggered during ATP- and cholesterol crystal-induced NLRP3 inflammasome activation and was required for NLRP3-mediated IL-1β secretion.
Conclusions: Increased expression of the key inflammasome components in advanced coronary lesions implies enhanced activity of the inflammasome pathway in progression of coronary atherosclerosis. The p38δ mitogen-activated protein kinase was identified as a novel regulator of NLRP3 inflammasome activation in primary human macrophages, and thus, represents a potential target for modulation of atherosclerotic inflammation.
Keywords: coronary artery disease; inflammation; innate immunity; interleukin; macrophage.
© 2016 American Heart Association, Inc.