Quercetin is a natural compound that has several biological activities including anticancer activity. However, the use of this drug has been limited mostly because of its poor water solubility and low bioavailability. Therefore, the development of quercetin-loaded nanocarrier systems may be considered a promising advance to exploit its therapeutic properties in clinical setting including cancer treatment. This study evaluates the effect of orally administered nanosized emulsion containing quercetin (QU-NE) on the cytotoxicity activity against B16-F10 cells in vitro, and on subcutaneous melanoma in mice inoculated with B16-F1O cells. In vivo experiments, also evaluate the co-administration of quercetin with cisplatin in order to predict synergic effects and the renal and hepatic toxicity. The nanocarriers were prepared through the hot solvent diffusion associated with the phase inversion temperature methods. In vitro study showed reduction of cell viability in a concentration-depend manner for free quercetin and QU-NE. In vivo study, quercetin either as a free drug or colloidal dispersion was administrated at a dose of 5 mg kg(-1) twice a week for 17 days via oral route. Cisplatin was administrated at dose of 1 mg kg(-1) once a week intraperitoneally. Free quercetin and QU-NE reduced tumor growth, however, the reduction observed for QU-NE (P < 0.001 vs. control) was significantly higher than free quercetin (P < 0.05 vs. control). The association of both drugs did not show synergic effect. Besides, no renal or hepatic toxicities were observed after administration of free quercetin and QU-NE. These results suggest that an improvement in the oral bioavailability of quercetin occurred when this compound was dissolved in the oily phase of a nanosized emulsion, indicating that it might have a potential application in the treatment of melanoma.