Origin of problems related to Staudinger reduction in carbopeptoid syntheses

Amino Acids. 2016 Nov;48(11):2619-2633. doi: 10.1007/s00726-016-2289-x. Epub 2016 Jul 20.

Abstract

We report the solid phase synthesis of -GG-X-GG- type α/β-carbopeptoids incorporating RibAFU(ip) (1a, tX) or XylAFU(ip) (2a, cX) sugar amino acids. Though coupling efficacy is moderate, both the lengthier synthetic route using Fmoc derivative (e.g., Fmoc-RibAFU(ip)-OH) and the azido derivative (e.g., N3-RibAFU(ip)-OH) via Staudinger reaction with nBu3P can be successfully applied. Both X-ray diffraction, 1H- and 31P-NMR, and theoretical (QM) data support and explain why the application of Ph3P as Staudinger reagent is "ineffective" in the case of a cis stereoisomer, if cX is attached to the preceding residue with a peptide (-CONH-) bond. The failure of the polypeptide chain elongation with N3-cX originates from the "coincidence" of a steric crowdedness and an electronic effect disabling the mandatory nucleophilic attack during the hydrolysis of a quasi penta-coordinated triphenylphosphinimine. Nevertheless, the synthesis of the above α/β-chimera peptides as completed now by a new pathway via 1,2-O-isopropylidene-3-azido-3-deoxy-ribo- and -xylo-furanuronic acid (H-RibAFU(ip)-OH 1a and H-XylAFU(ip)-OH 2a) coupled with N-protected α-amino acids on solid phase could serve as useful examples and starting points of further synthetic efforts.

Keywords: Carbopeptoids; Iminophosphorane; Staudinger reaction; Sugar amino acids.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Glycopeptides / chemical synthesis*
  • Glycopeptides / chemistry*

Substances

  • Glycopeptides