Apoptosis plays a critical role in the development of myocardial infarction. Cardiomyocytes are enriched with mitochondria and excessive mitochondrial fission can trigger cellular apoptosis. Recently, the mitochondrial ubiquitin ligase (MITOL), localized in the mitochondrial outer membrane, was reported to play an important role in the regulation of mitochondrial dynamics and apoptosis. However, the underlying mechanism of its action remains uncertain. The present study was aimed at uncovering the role of MITOL in the regulation of cardiomyocyte apoptosis. Our results showed that MITOL expression was up-regulated in cardiomyocytes in response to apoptotic stimulation. Mitochondrial ubiquitin ligase overexpression blocked dynamin-related protein 1 accumulation in the mitochondria, and attenuated the mitochondrial fission induced by hydrogen peroxide. Conversely, MITOL knockdown sensitized cardiomyocytes to undergo mitochondrial fission, resulting in subsequent apoptosis. These findings suggest that MITOL plays a protective role against apoptosis in cardiomyocytes, and may serve as a potential therapeutic target for apoptosis-related cardiac diseases.
Keywords: MITOL; apoptosis; cardiomyocytes; doxorubicin; hydrogen peroxide; mitochondrial fission.
© 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.