Characterization of prophages containing "evolved" Dit/Tal modules in the genome of Lactobacillus casei BL23

Appl Microbiol Biotechnol. 2016 Nov;100(21):9201-9215. doi: 10.1007/s00253-016-7727-x. Epub 2016 Jul 23.

Abstract

Lactic acid bacteria (LAB) have many applications in food and industrial fermentations. Prophage induction and generation of new virulent phages is a risk for the dairy industry. We identified three complete prophages (PLE1, PLE2, and PLE3) in the genome of the well-studied probiotic strain Lactobacillus casei BL23. All of them have mosaic architectures with homologous sequences to Streptococcus, Lactococcus, Lactobacillus, and Listeria phages or strains. Using a combination of quantitative real-time PCR, genomics, and proteomics, we showed that PLE2 and PLE3 can be induced-but with different kinetics-in the presence of mitomycin C, although PLE1 remains as a prophage. A structural analysis of the distal tail (Dit) and tail associated lysin (Tal) baseplate proteins of these prophages and other L. casei/paracasei phages and prophages provides evidence that carbohydrate-binding modules (CBM) located within these "evolved" proteins may replace receptor binding proteins (RBPs) present in other well-studied LAB phages. The detailed study of prophage induction in this prototype strain in combination with characterization of the proteins involved in host recognition will facilitate the design of new strategies for avoiding phage propagation in the dairy industry.

Keywords: Bacteriophage; Baseplate; Lactobacillus casei; Prophage.

MeSH terms

  • Food Microbiology
  • Lacticaseibacillus casei / genetics*
  • Lacticaseibacillus casei / virology*
  • Mitomycin / metabolism
  • Nucleic Acid Synthesis Inhibitors / metabolism
  • Prophages / genetics*
  • Prophages / physiology*
  • Viral Tail Proteins / genetics
  • Virus Activation*

Substances

  • Nucleic Acid Synthesis Inhibitors
  • Viral Tail Proteins
  • Mitomycin