Although MoS2 based heterostructures have drawn increased attention, the van der Waals forces within MoS2 layers make it difficult for the layers to form strong chemical coupled interfaces with other materials. In this paper, we demonstrate the successful strong chemical attachment of MoS2 on TiO2 nanobelts after appropriate surface modifications. The etch-created dangling bonds on TiO2 surfaces facilitate the formation of a steady chemically bonded MoS2/TiO2 interface. With the aid of high resolution transmission electron microscope measurements, the in-plane structure registry of MoS2/TiO2 is unveiled at the atomic scale, which shows that MoS2[1-10] grows along the direction of TiO2[001] and MoS2[110] parallel to TiO2[100] with every six units of MoS2 superimposed on five units of TiO2. Electronically, type II band alignments are realized for all surface treatments. Moreover, the band offsets are delicately correlated to the surface states, which plays a significant role in their photocatalytic performance.