A pancreatic ductal adenocarcinoma subpopulation is sensitive to FK866, an inhibitor of NAMPT

Oncotarget. 2016 Aug 16;7(33):53783-53796. doi: 10.18632/oncotarget.10776.

Abstract

Treating pancreatic cancer is extremely challenging due to multiple factors, including chemoresistance and poor disease prognosis. Chemoresistance can be explained by: the presence of a dense stromal barrier leading to a lower vascularized condition, therefore limiting drug delivery; the huge intra-tumoral heterogeneity; and the status of epithelial-to-mesenchymal transition. These factors are highly variable between patients making it difficult to predict responses to chemotherapy. Nicotinamide phosphoribosyl transferase (NAMPT) is the main enzyme responsible for recycling cytosolic NAD+ in hypoxic conditions. FK866 is a noncompetitive specific inhibitor of NAMPT, which has proven anti-tumoral effects, although a clinical advantage has still not been demonstrated. Here, we tested the effect of FK866 on pancreatic cancer-derived primary cell cultures (PCCs), both alone and in combination with three different drugs typically used against this cancer: gemcitabine, 5-Fluorouracil (5FU) and oxaliplatin. The aims of this study were to evaluate the benefit of drug combinations, define groups of sensitivity, and identify a potential biomarker for predicting treatment sensitivity. We performed cell viability tests in the presence of either FK866 alone or in combination with the drugs above-mentioned. We confirmed both inter- and intra-tumoral heterogeneity. Interestingly, only the in vitro effect of gemcitabine was influenced by the addition of FK866. We also found that NAMPT mRNA expression levels can predict the sensitivity of cells to FK866. Overall, our results suggest that patients with tumors sensitive to FK866 can be identified using NAMPT mRNA levels as a biomarker and could therefore benefit from a co-treatment of gemcitabine plus FK866.

Keywords: FK866; NAMPT; chemotherapy; pancreatic cancer.

MeSH terms

  • Acrylamides / pharmacology*
  • Adult
  • Aged
  • Aged, 80 and over
  • Animals
  • Antineoplastic Agents / pharmacology*
  • Biomarkers, Tumor / metabolism
  • Carcinoma, Pancreatic Ductal / enzymology
  • Carcinoma, Pancreatic Ductal / pathology*
  • Cytokines / antagonists & inhibitors*
  • Cytokines / biosynthesis
  • Drug Resistance, Neoplasm / drug effects
  • Enzyme Inhibitors / pharmacology
  • Female
  • Humans
  • Male
  • Mice
  • Middle Aged
  • Nicotinamide Phosphoribosyltransferase / antagonists & inhibitors*
  • Nicotinamide Phosphoribosyltransferase / biosynthesis
  • Pancreatic Neoplasms / enzymology
  • Pancreatic Neoplasms / pathology*
  • Piperidines / pharmacology*
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays

Substances

  • Acrylamides
  • Antineoplastic Agents
  • Biomarkers, Tumor
  • Cytokines
  • Enzyme Inhibitors
  • N-(4-(1-benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide
  • Piperidines
  • Nicotinamide Phosphoribosyltransferase
  • nicotinamide phosphoribosyltransferase, human