Purpose: To design a general framework for the optimization of an MRI protocol based on the the diffusion-weighted dual-echo steady-state (DW-DESS) sequence, enabling quantitative and simultaneous mapping of proton density (PD), relaxation times T1 and T2 and diffusion coefficient D.
Methods: A parameterization of the DW-DESS sequence minimizing the Cramér-Rao lower bound of each parameter estimate was proposed and tested in a phantom experiment. An extension of the protocol was implemented for brain imaging to return the rotationally invariant mean diffusivity (MD).
Results: In an NiCl2 -doped agar gel phantom wherein T1/T2=920/65 ms, the parameter estimation errors were below 3% for PD and T1 and below 7% for T2 and D while the measured signal-to-noise ratio always exceeded 20. In the human brain, the in vivo parametric maps obtained were overall in reasonable agreement with gold standard measurements, despite a broadening of the distributions due to physiological motion.
Conclusion: Within the optimization framework presented here, DW-DESS images can be quantitatively interpreted to yield four intrinsic parameters of the tissue. Currently, the method is limited by the sensitivity of the DW-DESS sequence in terms of physiological motion. Magn Reson Med 78:130-141, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Keywords: diffusion; dual-echo; mean diffusivity; proton density; quantitative imaging; relaxation time mapping; steady-state; steady-state free precession.
© 2016 International Society for Magnetic Resonance in Medicine.