Vanadium(iv) complexes have recently shown record quantum spin coherence times that in several circumstances are limited by spin-lattice relaxation. The role of the environment and vibronic properties in the low temperature dynamics is here investigated by a comparative study of the magnetization dynamics as a function of crystallite size and the steric hindrance of the β-diketonate ligands in VO(acac)2 (1), VO(dpm)2 (2) and VO(dbm)2 (3) evaporable complexes (acac- = acetylacetonate, dpm- = dipivaloylmethanate, and dbm- = dibenzoylmethanate). A pronounced crystallite size dependence of the relaxation time is observed at unusually high temperatures (up to 40 K), which is associated with a giant spin-phonon bottleneck effect. We model this behaviour by an ad hoc force field approach derived from density functional theory calculations, which evidences a correlation of the intensity of the phenomenon with ligand dimensions and the unit cell size.