There is limited data on co-expression of FGFR/FGR amplifications and PI3K/ AKT/mTOR alterations in breast cancer. Tumors from patients with metastatic breast cancer referred to our Phase I Program were analyzed by next generation sequencing (NGS). Genomic libraries were selected for all exons of 236 (or 182) cancer-related genes sequenced to average depth of >500× in a CLIA laboratory (Foundation Medicine, Cambridge, MA, USA) and analyzed for all classes of genomic alterations. We report genomic profiles of 112 patients with metastatic breast cancer, median age 55 years (range, 27-78). Twenty-four patients (21%) had at least one amplified FGFR or FGF. Fifteen of the 24 patients (63%) also had an alteration in the PI3K/ AKT/mTOR pathway. There was no association between alterations in FGFR/FGF and PI3K/AKT/mTOR (P=0.49). Patients with simultaneous amplification in FGFR/FGF signaling and the PI3K/AKT/mTOR pathway had a higher rate of SD≥6 months/PR/ CR when treated with therapies targeting the PI3K/AKT/mTOR pathway than patients with only alterations in the PI3K/AKT/mTOR pathway (73% vs. 34%; P=0.0376) and remained on treatment longer (6.8 vs. 3.7 months; P=0.053). Higher response rates were seen in patients with simultaneous amplification in FGFR/FGF signaling and alterations in the PI3K/AKT/mTOR pathway who were treated with inhibitors of that pathway.
Keywords: FGFR; PI3K; breast cancer; next-generation sequencing.