Morphological and dynamic contrast enhanced MR imaging features for the differentiation of chordoma and giant cell tumors in the Axial Skeleton

J Magn Reson Imaging. 2017 Apr;45(4):1068-1075. doi: 10.1002/jmri.25414. Epub 2016 Aug 4.

Abstract

Purpose: To characterize the morphological and dynamic-contrast-enhanced (DCE) MRI features of chordoma and giant cell tumor (GCT) of bone occurring in the axial skeleton.

Materials and methods: A total of 13 patients with chordoma and 26 patients with GCT who received conventional T1, T2, and DCE-MRI on 3 Tesla MR scanners were retrospectively identified and analyzed. Two radiologists evaluated morphological features independently, including the lesion location, expansile bone changes, vertebral compression, presence of paraspinal soft tissue mass, fibrous septa, and the signal intensity on T1WI and T2WI. The inter-observer agreement was evaluated by kappa test. The DCE kinetics was measured to obtain the initial area under curve (IAUC) and the wash-out slope; also the two-compartmental pharmacokinetic model was applied to obtain Ktrans and kep . The diagnostic accuracy was evaluated by CHAID decision tree and ROC analysis.

Results: Chordomas were more likely to show soft tissue mass than GCTs (13/13 = 100% versus 15/26 = 58%; P = 0.007), as well as fibrous septa (9/13 = 69% versus 0; P < 0.001). In decision tree analysis, presence of fibrous septa and lesion location yield 31/39 = 79% accuracy. The DCE-MRI pharmacokinetic parameters Ktrans and kep of GCTs were significantly higher than those of chordomas, 0.13 ± 0.65 versus 0.06 ± 0.04 (1/min) for Ktrans , 0.62 ± 0.22 versus 0.17 ± 0.12 (1/min) for kep , P < 0.001 for both. If using kep = 0.43/min as the cut-off value, it achieved 100% sensitivity and 92% specificity to differentiate chordoma from GCT, with an overall accuracy of 37/39 = 95%. The IAUC was highly correlated with Ktrans (r = 0.94), and the slope was highly correlated with kep (r = 0.95).

Conclusion: Several morphological features were significantly different between chordoma and GCT, but their diagnostic performance was inferior to that of DCE-MRI.

Level of evidence: 4 J. Magn. Reson. Imaging 2017;45:1068-1075.

Keywords: chordoma; differential diagnosis; dynamic-contrast-enhanced MRI (DCE-MRI); giant cell tumor (GCT).

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Area Under Curve
  • Bone Neoplasms / diagnostic imaging*
  • Chordoma / diagnostic imaging*
  • Contrast Media*
  • Diagnosis, Differential
  • Female
  • Giant Cell Tumor of Bone / diagnostic imaging*
  • Humans
  • Image Enhancement / methods*
  • Image Processing, Computer-Assisted / methods
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Observer Variation
  • ROC Curve
  • Reproducibility of Results
  • Retrospective Studies
  • Sensitivity and Specificity
  • Young Adult

Substances

  • Contrast Media