Forward genetic screen of human transposase genomic rearrangements

BMC Genomics. 2016 Aug 4:17:548. doi: 10.1186/s12864-016-2877-x.

Abstract

Background: Numerous human genes encode potentially active DNA transposases or recombinases, but our understanding of their functions remains limited due to shortage of methods to profile their activities on endogenous genomic substrates.

Results: To enable functional analysis of human transposase-derived genes, we combined forward chemical genetic hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) screening with massively parallel paired-end DNA sequencing and structural variant genome assembly and analysis. Here, we report the HPRT1 mutational spectrum induced by the human transposase PGBD5, including PGBD5-specific signal sequences (PSS) that serve as potential genomic rearrangement substrates.

Conclusions: The discovered PSS motifs and high-throughput forward chemical genomic screening approach should prove useful for the elucidation of endogenous genome remodeling activities of PGBD5 and other domesticated human DNA transposases and recombinases.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Base Sequence
  • Cell Line
  • Gene Expression
  • Gene Rearrangement*
  • Genetic Testing*
  • Genome, Human*
  • Genomics* / methods
  • High-Throughput Nucleotide Sequencing
  • Humans
  • Hypoxanthine Phosphoribosyltransferase / chemistry
  • Hypoxanthine Phosphoribosyltransferase / genetics
  • Mutation
  • Protein Sorting Signals / genetics
  • Sequence Analysis, DNA
  • Transposases / chemistry
  • Transposases / genetics*

Substances

  • Protein Sorting Signals
  • Hypoxanthine Phosphoribosyltransferase
  • PGBD5 protein, human
  • Transposases

Associated data

  • Dryad/10.5061/dryad.t748p