We show that Staphylococcus epidermidis, a commensal bacterium in the human skin microbiome, produces short-chain fatty acids by glycerol fermentation that can induce adipogenesis. Although the antimicrobial and anti-inflammatory activities of short-chain fatty acids have been previously well characterized, little is known about the contribution of short-chain fatty acids to the adipogenic differentiation of adipose-derived stem cells (ADSCs). We show that ADSCs differentiated into adipocytes and accumulated lipids in the cytoplasm when cultured with butyric acid, a principal short-chain fatty acid in the fermentation metabolites of S. epidermidis. Additionally, a co-drug, butyric acid 2-(2-butyryloxyethoxy) ethyl ester (BA-DEG-BA), released active butyric acid when it was intradermally injected into mouse ears and induced ADSC differentiation, characterized by an increased expression of cytoplasmic lipids and perilipin A. The BA-DEG-BA-induced adipogenic differentiation was mediated via peroxisome proliferator-activated receptor gamma. Furthermore, intradermal injection of ADSCs along with BA-DEG-BA into mouse ears markedly enhanced the adipogenic differentiation of ADSCs, leading to dermal augmentation. Our study introduces BA-DEG-BA as an enhancer of ADSC adipogenesis and suggests an integral interaction between the human skin microbiome and ADSCs.
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.