A high-throughput method for the determination of the kinetics of protein tyrosine phosphatase (PTP) activity in a microarray format is presented, allowing real-time monitoring of the dephosphorylation of a 3-nitro-phosphotyrosine residue. The 3-nitro-phosphotyrosine residue is incorporated in potential PTP substrates. The peptide substrates are immobilized onto a porous surface in discrete spots. After dephosphorylation by a PTP, a 3-nitrotyrosine residue is formed that can be detected by a specific, sequence-independent antibody. The rate of dephosphorylation can be measured simultaneously on 12 microarrays, each comprising three concentrations of 48 clinically relevant peptides, using 1.0-5.0 μg of protein from a cell or tissue lysate or 0.1-2.0 μg of purified phosphatase. The data obtained compare well with solution phase assays involving the corresponding unmodified phosphotyrosine substrates. This technology, characterized by high-throughput (12 assays in less than 2 h), multiplexing and low sample requirements, facilitates convenient and unbiased investigation of the enzymatic activity of the PTP enzyme family, for instance by profiling of PTP substrate specificities, evaluation of PTP inhibitors and pinpointing changes in PTP activity in biological samples related to diseases.
Keywords: Multiplex assay; Nitrotyrosine; Peptide microarray; Phosphatase activity; Phosphatase activity profiling; Phosphatase inhibition; Phosphatase kinetics; Phosphatase substrate identification; Phospho-nitrotyrosine; Tyrosine phosphatase.