Effects of diet forage source and neutral detergent fiber content on milk production of dairy cattle and methane emissions determined using GreenFeed and respiration chamber techniques

J Dairy Sci. 2016 Oct;99(10):7904-7917. doi: 10.3168/jds.2015-10759. Epub 2016 Aug 10.

Abstract

Strategies to mitigate greenhouse gas emissions from dairy cattle are unlikely to be adopted if production or profitability is reduced. The primary objective of this study was to examine the effects of high maize silage (MS) versus high grass silage (GS) diets, without or with added neutral detergent fiber (NDF) on milk production and methane emission of dairy cattle, using GreenFeed (GF) or respiration chamber (RC) techniques for methane emission measurements. Experiment 1 was 12wk in duration with a randomized block continuous design and 40 Holstein cows (74d in milk) in free-stall housing, assigned to 1 of 4 dietary treatments (n=10 per treatment), according to calving date, parity, and milk yield. Milk production and dry matter intake (DMI) were measured daily, and milk composition measured weekly, with methane yield (g/kg of DMI) estimated using a GF unit (wk 10 to 12). Experiment 2 was a 4×4 Latin square design with 5-wk periods and 4 dairy cows (114d in milk) fed the same 4 dietary treatments as in experiment 1. Measurements of DMI, milk production, and milk composition occurred in wk 4, and DMI, milk production, and methane yield were measured for 2d in RC during wk 5. Dietary treatments for both experiments were fed as total mixed rations offered ad libitum and containing 500g of silage/kg of dry matter composed (DM basis) of either 75:25 MS:GS (MS) or 25:75 MS:GS (GS), without or with added NDF from chopped straw and soy hulls (+47g of NDF/kg of dry matter). In both experiments, compared with high GS, cows fed high MS had a higher DMI, greater milk production, and lower methane yield (24% lower in experiment 1 using GF and 8% lower in experiment 2 using RC). Added NDF increased (or tended to increase) methane yield for high MS, but not high GS diets. In the separate experiments, the GF and RC methods detected similar dietary treatment effects on methane emission (expressed as g/d and g/kg of DMI), although the magnitude of the differences varied between experiments. Overall methane emission and yield were 448g/d and 20.9g/kg of DMI for experiment 1 using GF and 458g/d and 23.8g/kg of DMI for experiment 2 using RC, respectively.

Keywords: fiber; forage; methane emission; milk production.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Animals
  • Cattle
  • Detergents
  • Diet / veterinary
  • Digestion
  • Female
  • Lactation
  • Methane / biosynthesis*
  • Milk*
  • Silage

Substances

  • Detergents
  • Methane