The reductive disproportionation of nitric oxide (1 atm) is mediated by the bulky U(III) aryloxide [U(III)(OAr(Ad,Ad,Me))3] ((Ad,Ad,Me)ArO = O-C6H2-2,6-Ad-4-Me) (1) to form the U(V) terminal oxo species [((Ad,Ad,Me)ArO)3U(V)(O)] (2) and N2O, as confirmed by single crystal X-ray diffraction and GC-MS measurements. The reaction is quantitative in the solid state. Mechanistic and theoretical studies of the reaction suggest that the N-N bond is formed by the coupling of an η(1)-O bound nitric oxide ligand with gaseous NO to give an η(1)-(N2O2)(1-) intermediate prior to the spontaneous extrusion of N2O to yield the U(V) terminal oxo species 2.