Background: Acute myeloid leukemia (AML) carrying nucleophosmin 1 (NPM1) mutations (NPMc(+)) is regarded as a separate entity of myeloid neoplasms due to its distinct biological and clinical features. However, NPMc(+) alone displays low leukemogenic activity and cooperating events appear crucial for AML to develop. Dysregulation of homeobox genes, such as HOXA9 and MEIS1, is a common transcriptional signature of NPMc(+) AML. Furthermore, the pathogenic role for NPMc(+) in AML remains incompletely understood.
Aim: To elucidate if NPMc(+) collaborates with Meis1 or Hoxa9 in the evolvement of AML.
Methods: Murine bone marrow cells were genetically engineered to express mutated NPM1 variant A in combination with overexpression of Meis1 or Hoxa9. The capacity of the transduced cells to transform in vitro and to cause leukemia in vivo was then assessed.
Findings and conclusion: There was no synergy between NPMc(+) and Meis1 or Hoxa9 in causing leukemogenic transformation of murine bone marrow cells, or in inducing AML in a transplantation model. Hence, overexpression of Meis1 or Hoxa9 in combination with NPMc(+) expression was not sufficient to generate an NPMc(+) AML mouse model.
Keywords: Acute myeloid leukemia; Hoxa9; Meis1; NPM1.