Although epithelial membrane protein 3 (EMP3) has been implicated as a candidate tumor suppressor gene for low grade glioma, its biological function in glioblastoma multiforme (GBM) still remains poorly understood. Herein, we showed that EMP3 was highly expressed in CD44-high primary GBMs. Depletion of EMP3 expression suppressed cell proliferation, impaired in vitro tumorigenic potential and induced apoptosis in CD44-high GBM cell lines. We also identified TGF-β/Smad2/3 signaling pathway as a potential target of EMP3. EMP3 interacts with TGF-β receptor type 2 (TGFBR2) upon TGF-β stimulation in GBM cells. Consequently, the EMP3-TGFBR2 interaction regulates TGF-β/Smad2/3 signaling activation and positively impacts on TGF-β-stimulated gene expression and cell proliferation in vitro and in vivo. Highly correlated protein expression of EMP3 and TGF-β/Smad2/3 signaling pathway components was also observed in GBM specimens, confirming the clinical relevancy of activated EMP3/TGF-β/Smad2/3 signaling in GBM. In conclusion, our findings revealed that EMP3 might be a potential target for CD44-high GBMs and highlight the essential functions of EMP3 in TGF-β/Smad2/3 signaling activation and tumor progression.
Keywords: EMP3; TGF-β; TGFBR2; gliblastoma; tumorigenesis.