Voltage-gated sodium channel Nav 1.7 promotes gastric cancer progression through MACC1-mediated upregulation of NHE1

Int J Cancer. 2016 Dec 1;139(11):2553-69. doi: 10.1002/ijc.30381. Epub 2016 Aug 26.

Abstract

Voltage-gated sodium channels (VGSCs), which are aberrantly expressed in several human cancers, affect cancer cell behavior; however, their role in gastric cancer (GC) and the link between these channels and tumorigenic signaling remain unclear. The aims of this study were to determine the clinicopathological significance and role of the VGSC Nav 1.7 in GC progression and to investigate the associated mechanisms. Here, we report that the SCN9A gene encoding Nav 1.7 was the most abundantly expressed VGSC subtype in GC tissue samples and two GC cell lines (BGC-823 and MKN-28 cells). SCN9A expression levels were also frequently found to be elevated in GC samples compared to nonmalignant tissues by real-time PCR. In the 319 GC specimens evaluated by immunohistochemistry, Nav 1.7 expression was correlated with prognosis, and transporter Na(+) /H(+) exchanger-1 (NHE1) and oncoprotein metastasis-associated in colon cancer-1 (MACC1) expression. Nav 1.7 suppression resulted in reduced voltage-gated sodium currents, decreased NHE1 expression, increased extracellular pH and decreased intracellular pH, and ultimately, reduced invasion and proliferation rates of GC cells and growth of GC xenografts in nude mice. Nav 1.7 inhibition led to reduced MACC1 expression, while MACC1 inhibition resulted in reduced NHE1 expression in vitro and in vivo. Mechanistically, the suppression of Nav 1.7 decreased NF-κB p65 nuclear translocation via p38 activation, thus reducing MACC1 expression. Downregulation of MACC1 decreased c-Jun phosphorylation and subsequently reduced NHE1 expression, whereas the addition of hepatocyte growth factor (HGF), a c-Met physiological ligand, reversed the effect. These results indicate that Nav 1.7 promotes GC progression through MACC1-mediated upregulation of NHE1. Therefore, Nav 1.7 is a potential prognostic marker and/or therapeutic target for GC.

Keywords: Gastric cancer; MACC1; NHE1; Nav1.7; Tumor progression.

MeSH terms

  • Animals
  • Cation Transport Proteins / biosynthesis
  • Cation Transport Proteins / genetics
  • Cation Transport Proteins / metabolism*
  • Cell Line, Tumor
  • Disease Progression
  • Female
  • Gene Knockdown Techniques
  • Hepatocyte Growth Factor / metabolism
  • Heterografts
  • Humans
  • MAP Kinase Signaling System
  • Mice
  • Mice, Nude
  • NAV1.7 Voltage-Gated Sodium Channel / biosynthesis
  • NAV1.7 Voltage-Gated Sodium Channel / genetics
  • NAV1.7 Voltage-Gated Sodium Channel / metabolism*
  • NF-kappa B / metabolism
  • Neoplasm Invasiveness
  • Proto-Oncogene Proteins c-jun / metabolism
  • Proto-Oncogene Proteins c-met / metabolism
  • Sodium-Hydrogen Exchanger 1
  • Sodium-Hydrogen Exchangers / biosynthesis
  • Sodium-Hydrogen Exchangers / genetics
  • Sodium-Hydrogen Exchangers / metabolism*
  • Stomach Neoplasms / genetics
  • Stomach Neoplasms / metabolism*
  • Stomach Neoplasms / pathology
  • Trans-Activators
  • Transcription Factors / metabolism*
  • Up-Regulation

Substances

  • Cation Transport Proteins
  • HGF protein, human
  • MACC1 protein, human
  • NAV1.7 Voltage-Gated Sodium Channel
  • NF-kappa B
  • Proto-Oncogene Proteins c-jun
  • SCN9A protein, human
  • SLC9A1 protein, human
  • Sodium-Hydrogen Exchanger 1
  • Sodium-Hydrogen Exchangers
  • Trans-Activators
  • Transcription Factors
  • Hepatocyte Growth Factor
  • Proto-Oncogene Proteins c-met