We discuss the connection of high-energy gamma-ray measurements with precision atomic mass determinations. These rather different technologies, properly combined, are shown to lead to new values for the neutron mass and the molar Planck constant. We then proceed to describe the gamma-ray measurement process using the GAMS4 facility at the Institut Laue-Langevin and its application to a recent measurement of the 2.2 MeV deuteron binding energy and the neutron mass. Our paper concludes by describing the first crystal diffraction measurement of the 8.6 MeV (36)Cl binding energy.
Keywords: atomic masses; binding energy; crystal diffraction; fundamental constants; gamma rays; molar Planck constant; neutron mass.