Use of archival resources has been limited to date by inconsistent methods for genomic profiling of degraded RNA from formalin-fixed paraffin-embedded (FFPE) samples. RNA-sequencing offers a promising way to address this problem. Here, we evaluated transcriptomic dose responses using RNA-sequencing in paired FFPE and frozen (FROZ) samples from 2 archival studies in mice, one <2 years old and the other >20 years old. Experimental treatments included 3 different doses of di(2-ethylhexyl)phthalate or dichloroacetic acid for the recently archived and older studies, respectively. Total RNA was ribo-depleted and sequenced using the Illumina HiSeq platform. In the recently archived study, FFPE samples had 35% lower total counts compared to FROZ samples but high concordance in fold-change values of differentially expressed genes (DEGs) (r2 = 0.99), highly enriched pathways (90% overlap with FROZ), and benchmark dose estimates for preselected target genes (<5% difference vs FROZ). In contrast, older FFPE samples had markedly lower total counts (3% of FROZ) and poor concordance in global DEGs and pathways. However, counts from FFPE and FROZ samples still positively correlated (r2 = 0.84 across all transcripts) and showed comparable dose responses for more highly expressed target genes. These findings highlight potential applications and issues in using RNA-sequencing data from FFPE samples. Recently archived FFPE samples were highly similar to FROZ samples in sequencing quality metrics, DEG profiles, and dose-response parameters, while further methods development is needed for older lower-quality FFPE samples. This work should help advance the use of archival resources in chemical safety and translational science.
Keywords: FFPE; RNA-sequencing; archival resources.; benchmark dose; dose–response; toxicogenomics.
Published by Oxford University Press on behalf of the Society of Toxicology 2016. This work is written by US Government employees and is in the public domain in the US.