Approximately one-half of patients with newly diagnosed cancer and many patients with persistent or recurrent tumors receive radiotherapy (RT), with the explicit goal of eliminating tumors through direct killing. The current RT dose and schedule regimens have been empirically developed. Although early clinical studies revealed that RT could provoke important responses not only at the site of treatment but also on remote, nonirradiated tumor deposits-the so-called "abscopal effect"- the underlying mechanisms were poorly understood and were not therapeutically exploited. Recent work has elucidated the immune mechanisms underlying these effects and has paved the way for developing combinations of RT with immune therapy. In the wake of recent therapeutic breakthroughs in the field of immunotherapy, rational combinations of immunotherapy with RT could profoundly change the standard of care for many tumor types in the next decade. Thus, a deep understanding of the immunologic effects of RT is urgently needed to design the next generation of therapeutic combinations. Here, the authors review the immune mechanisms of tumor radiation and summarize the preclinical and clinical evidence on immunotherapy-RT combinations. Furthermore, a framework is provided for the practicing clinician and the clinician investigator to guide the development of novel combinations to more rapidly advance this important field. CA Cancer J Clin 2017;67:65-85. © 2016 American Cancer Society.
Keywords: T cells; abscopal effect; fractionation; immunotherapy; inflammation; radiotherapy.
© 2016 American Cancer Society.