Phospholipid Species in Newborn and 4 Month Old Infants after Consumption of Different Formulas or Breast Milk

PLoS One. 2016 Aug 29;11(8):e0162040. doi: 10.1371/journal.pone.0162040. eCollection 2016.

Abstract

Introduction: Arachidonic acid (AA) and docosahexaenoic acid (DHA) are important long-chain polyunsaturated fatty acids for neuronal and cognitive development and are ingredients of infant formulae that are recommended but there is no evidence based minimal supplementation level available. The aim of this analysis was to investigate the effect of supplemented AA and DHA on phospholipid metabolism.

Methods: Plasma samples of a randomized, double-blind infant feeding trial were used for the analyses of phospholipid species by flow-injection mass spectrometry. Healthy term infants consumed isoenergetic formulae (intervention formula with equal amounts of AA and DHA-IF, control formula without additional AA and DHA-CF) from the first month of life until the age of 120 days. A group of breast milk (BM) -fed infants was followed as a reference.

Results: The plasma profile detected in newborns was different from 4 month old infants, irrespective of study group. Most relevant changes were seen in higher level of LPC16:1, LPC20:4, PC32:1, PC34:1 and PC36:4 and lower level of LPC18:0, LPC18:2, PC32:2, PC36:2 and several ether-linked phosphatidylcholines in newborns. The sum of all AA and DHA species at 4 month old infants in the CF group showed level of 40% (AA) and 51% (DHA) of newborns. The supplemented amount of DHA resulted in phospholipid level comparable to BM infants, but AA phospholipids were lower than in BM infants. Interestingly, relative contribution of DHA was higher in ether-linked phosphatidylcholines in CF fed infants, but IF and BM fed infants showed higher overall ether-linked phosphatidylcholines levels.

Conclusion: In conclusion, we have shown that infant plasma phospholipid profile changes remarkably from newborn over time and is dependent on the dietary fatty acid composition. A supplementation of an infant formula with AA and DHA resulted in increased related phospholipid species.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Arachidonic Acid / administration & dosage
  • Arachidonic Acid / pharmacology
  • Breast Feeding
  • Dietary Supplements
  • Docosahexaenoic Acids / administration & dosage
  • Docosahexaenoic Acids / pharmacology
  • Double-Blind Method
  • Fatty Acids / blood
  • Fatty Acids, Omega-6 / blood
  • Fatty Acids, Unsaturated / blood
  • Female
  • Humans
  • Infant
  • Infant Formula*
  • Infant, Newborn
  • Male
  • Mass Spectrometry
  • Milk, Human*
  • Phospholipids / blood*

Substances

  • Fatty Acids
  • Fatty Acids, Omega-6
  • Fatty Acids, Unsaturated
  • Phospholipids
  • Docosahexaenoic Acids
  • Arachidonic Acid

Grants and funding

The study was financially supported by HiPP GmbH & Co Vertrieb KG (Pfaffenhofen, Germany). Additionally, the research leading to these results has received funding from the European Research Council Advanced Grant ERC-2012-AdG – no.322605 META-GROWTH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.