Cashew gum (CG) was grafted with N-isopropylacrylamide (NIPA) by radical polymerization to originate a stimuli-sensitive copolymer for drug delivery purposes. NMR and IR spectroscopy confirmed the insertion of NIPA onto the cashew gum chains. The graft copolymer (CG:NIPA) demonstrated thermal responsiveness. The critical aggregation concentration of the copolymers at 25°C was higher than at 50°C. At temperatures lower than the LCST, the nanoparticle size ranged from 12 to 21nm, depending on the CG:NIPA ratio, but above the LCST the particles aggregated, increasing the particle size. Regarding the potential for future oral application, the nanoparticles showed no cytotoxic activity against the Caco-2 and HT29-MTX intestine cell lines. Epirubicin was encapsulated into nanoparticles of CG-NIPA (1:1), resulting in a 64% association efficiency and 22% loading capacity. Thus, the CG:NIPA graft copolymer demonstrates good potential for used in controlled drug delivery systems.
Keywords: Cytotoxicity; Epirubicin; N-isopropylacrylamide; Nanoparticles; Thermo-sensitive.
Copyright © 2016 Elsevier Ltd. All rights reserved.