Background: Tuberculosis (TB) remains a major public health problem in many developing countries. Exploratory spatial analysis is a powerful instrument in spatial health research by virtue of its capacity to map disease distribution and associated risk factors at the population level. The aim of the present study was to describe the epidemiologic characteristics and spatial distribution of new cases of TB reported during the period 2002-2012 in Divinopolis, a midsized city located in the state of Minas Gerais, southeastern Brazil.
Methods: Sociodemographic and clinical data relating to the study cases were retrieved from the national Brazilian database and geocoded according to residential address. Choropleth and kernel density maps were constructed and a spatial-temporal analysis was performed. Tracts defined by the 2010 national census were classified as sectors with higher or lower densities of new TB cases based on the kernel density map. Multivariate logistic analysis was used to compare the two types of sectors according to income, level of literacy and population density.
Results: A total of 326 new cases of TB were reported during the study period. Residential addresses relating to 309 (94.8 %) of these were available in the SINAN database and the locations were geocoded and mapped. The average incidence of TB during the study period was 14.5/100,000 inhabitants. Pulmonary TB was the most predominant form (73.6 %) and 74.5 % of patients had been cured. The percentage of cases was highest in males (67.8 %) and individuals aged 25-44 years (41.1 %), and lowest in children aged less than 15 years (4.6 %). The disease was spatially distributed throughout the urban district. The incidence rate among urban census tracts ranged from 0.06 to 1.1 %, and the disease occurred predominantly in the downtown area (99.3 %). Higher population density was associated significantly with increased odds of living in a sector with a "higher density of cases", even after adjusting for income and education (odds ratio = 13.7).
Conclusions: The highest density of cases was strongly associated with higher population density but not with lower income or level of literacy.
Keywords: Epidemiology; Kernel density map; Spatial distribution; Spatial-temporal analysis; Tuberculosis.