Background and aims: Conifers dominated wet lowland tropical forests 100 million years ago (MYA). With a few exceptions in the Podocarpaceae and Araucariaceae, conifers are now absent from this biome. This shift to angiosperm dominance also coincided with a large decline in atmospheric CO2 concentration (ca). We compared growth and physiological performance of two lowland tropical angiosperms and conifers at ca levels representing pre-industrial (280 ppm), ambient (400 ppm) and Eocene (800 ppm) conditions to explore how differences in ca affect the growth and water-use efficiency (WUE) of seedlings from these groups.
Methods: Two conifers (Araucaria heterophylla and Podocarpus guatemalensis) and two angiosperm trees (Tabebuia rosea and Chrysophyllum cainito) were grown in climate-controlled glasshouses in Panama. Growth, photosynthetic rates, nutrient uptake, and nutrient use and water-use efficiencies were measured.
Key results: Podocarpus seedlings showed a stronger (66 %) increase in relative growth rate with increasing ca relative to Araucaria (19 %) and the angiosperms (no growth enhancement). The response of Podocarpus is consistent with expectations for species with conservative growth traits and low mesophyll diffusion conductance. While previous work has shown limited stomatal response of conifers to ca, we found that the two conifers had significantly greater increases in leaf and whole-plant WUE than the angiosperms, reflecting increased photosynthetic rate and reduced stomatal conductance. Foliar nitrogen isotope ratios (δ15N) and soil nitrate concentrations indicated a preference in Podocarpus for ammonium over nitrate, which may impact nitrogen uptake relative to nitrate assimilators under high ca SIGNIFICANCE: Podocarps colonized tropical forests after angiosperms achieved dominance and are now restricted to infertile soils. Although limited to a single species, our data suggest that higher ca may have been favourable for podocarp colonization of tropical South America 60 MYA, while plasticity in photosynthetic capacity and WUE may help account for their continued persistence under large changes in ca since the Eocene.
Keywords: Araucaria heterophylla; Chrysophyllum cainito; Podocarpus guatemalensis; Tabebuia rosea; angiosperm dominance; elevated CO2; nitrate assimilation; relative growth rate; tropical conifer; water-use efficiency.
© The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: [email protected].