Two-dimensional vibronic spectroscopy of molecular aggregates: Trimers, dimers, and monomers

J Chem Phys. 2016 Aug 28;145(8):084305. doi: 10.1063/1.4961388.

Abstract

The two-dimensional (2D) vibronic spectroscopy of molecular trimers is studied theoretically. The solution of the time-dependent Schrödinger equation is carried out with the multi-configurational time-dependent Hartree (MCTDH) method which allows for an efficient propagation of the multi-component wave functions. 2D-spectra are calculated for H- and J-type aggregates incorporating one or two vibrational modes for each monomer. In performing calculations for monomer, dimer, and trimer systems, it is documented how the vibronic structure of the 2D-spectrum changes upon aggregation. This is of importance for the characterization of aggregation behavior being influenced by experimental conditions such as temperature or concentration.