In a previous study, we purified three selenium-binding proteins (molecular masses 56, 14, and 12 kDa) from mouse liver using column chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The aim of the present study was to determine the amino acid sequence of the 14-kDa protein thereby establishing any relationship with known proteins. Although the amino terminus of the 14-kDa protein was blocked, separate in situ digestions of the protein with endoproteinases Glu-c and Lys-c gave overlapping peptides that provided a continuous sequence of 93 amino acids. This sequence exhibited a 92.5% sequence homology with rat liver fatty acid-binding protein. In situ enzymatic digestion and partial sequencing of a 12-kDa selenium-binding protein revealed identical homology to the 14-kDa protein. The 14-kDa protein bound specifically to an oleate-affinity column from which the protein and 75Se coeluted. Delipidation or sodium dodecyl sulfate treatment failed to remove 75Se from the protein, indicating that the selenium moiety was tightly bound to the protein. These observations confirm that the mouse liver selenium-binding 14-kDa protein is a fatty acid-binding protein. The nature of the selenium linkage to the protein still needs to be explored.