Simultaneous Determination of Oxygen and pH Inside Microfluidic Devices Using Core-Shell Nanosensors

Anal Chem. 2016 Oct 4;88(19):9796-9804. doi: 10.1021/acs.analchem.6b02849. Epub 2016 Sep 22.

Abstract

A powerful online analysis setup for the simultaneous detection of oxygen and pH is presented. It features core-shell nanosensors, which enable contactless and inexpensive read-out using adapted oxygen meters via modified dual lifetime referencing in the frequency domain (phase shift measurements). Lipophilic indicator dyes were incorporated into core-shell structured poly(styrene-block-vinylpyrrolidone) nanoparticles (average diameter = 180 nm) yielding oxygen nanosensors and pH nanosensors by applying different preparation protocols. The oxygen indicator platinum(II) meso-tetra(4-fluorophenyl) tetrabenzoporphyrin (PtTPTBPF) was entrapped into the polystyrene core (oxygen nanosensors) and a pH sensitive BF2-chelated tetraarylazadipyrromethene dye (aza-BODIPY) was incorporated into the polyvinylpyrrolidone shell (pH nanosensors). The brightness of the pH nanoparticles was increased by more than 3 times using a light harvesting system. The nanosensors have several advantages such as being excitable with red light, emitting in the near-infrared spectral region, showing a high stability in aqueous media even at high particle concentrations, high ionic strength, or high protein concentrations and are spectrally compatible with the used read-out device. The resolution for oxygen of the setup is 0.5-2.0 hPa (approximately 0.02-0.08 mg/L of dissolved oxygen) at low oxygen concentrations (<50 hPa) and 4-8 hPa (approximately 0.16-0.32 mg/L of dissolved oxygen) at ambient air oxygen concentrations (approximately 200 hPa at 980 mbar air pressure) at room temperature. The pH resolution is 0.03-0.1 pH units within the dynamic range (apparent pKa 7.23 ± 1.0) of the nanosensors. The sensors were used for online monitoring of pH changes during the enzymatic transformation of Penicillin G to 6-aminopenicillanic acid catalyzed by Penicillin G acylase in miniaturized stirred batch reactors or continuous flow microreactors.

Publication types

  • Research Support, Non-U.S. Gov't