Mutant p53: a novel target for the treatment of patients with triple-negative breast cancer?

Int J Cancer. 2017 Jan 1;140(1):234-246. doi: 10.1002/ijc.30425. Epub 2016 Sep 24.

Abstract

The identification and validation of a targeted therapy for patients with triple-negative breast cancer (TNBC) is currently one of the most urgent needs in breast cancer therapeutics. One of the key reasons for the failure to develop a new therapy for this subgroup of breast cancer patients has been the difficulty in identifying a highly prevalent, targetable molecular alteration in these tumors. Recently however, the p53 gene was found to be mutated in approximately 80% of basal/TNBC, raising the possibility that targeting the mutant p53 protein product might be a new approach for the treatment of this form of breast cancer. In this study, we investigated the anti-cancer activity of PRIMA-1 and PRIMA-1MET (APR-246), two compounds which were previously reported to reactivate mutant p53 and convert it to a form with wild-type (WT) properties. Using a panel of 18 breast cancer cell lines and 2 immortalized breast cell lines, inhibition of proliferation by PRIMA-1 and PRIMA-1MET was found to be cell-line dependent, but independent of cell line molecular subtype. Although response was independent of molecular subtype, p53 mutated cell lines were significantly more sensitive to PRIMA-1MET than p53 WT cells (p = 0.029). Furthermore, response (measured as IC50 value) correlated significantly with p53 protein level as measured by ELISA (p = 0.0089, r=-0.57, n = 19). In addition to inhibiting cell proliferation, PRIMA-1MET induced apoptosis and inhibited migration in a p53 mutant-dependent manner. Based on our data, we conclude that targeting mutant p53 with PRIMA-1MET is a potential new approach for treating p53-mutated breast cancer, including the subgroup with triple-negative (TN) disease.

Keywords: APR-246; PRIMA-1MET; breast cancer; mutant p53; triple-negative breast cancer.

MeSH terms

  • Aza Compounds / pharmacology*
  • Bridged Bicyclo Compounds, Heterocyclic / pharmacology*
  • Cell Line, Tumor
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Female
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • Molecular Targeted Therapy
  • Mutation* / drug effects
  • Quinuclidines / pharmacology*
  • Triple Negative Breast Neoplasms / drug therapy
  • Triple Negative Breast Neoplasms / genetics*
  • Triple Negative Breast Neoplasms / metabolism
  • Tumor Suppressor Protein p53 / genetics*
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • Aza Compounds
  • Bridged Bicyclo Compounds, Heterocyclic
  • Quinuclidines
  • TP53 protein, human
  • Tumor Suppressor Protein p53
  • 2,2-bis(hydroxymethyl)-1-azabicyclo(2,2,2,)octan-3-one
  • eprenetapopt