The mammalian neocortex has a repetitious, laminar structure and performs functions integral to higher cognitive processes, including sensory perception, memory, and coordinated motor output. What computations does this circuitry subserve that link these unique structural elements to their function? Potjans and Diesmann (2014) parameterized a four-layer, two cell type (i.e. excitatory and inhibitory) model of a cortical column with homogeneous populations and cell type dependent connection probabilities. We implement a version of their model using a displacement integro-partial differential equation (DiPDE) population density model. This approach, exact in the limit of large homogeneous populations, provides a fast numerical method to solve equations describing the full probability density distribution of neuronal membrane potentials. It lends itself to quickly analyzing the mean response properties of population-scale firing rate dynamics. We use this strategy to examine the input-output relationship of the Potjans and Diesmann cortical column model to understand its computational properties. When inputs are constrained to jointly and equally target excitatory and inhibitory neurons, we find a large linear regime where the effect of a multi-layer input signal can be reduced to a linear combination of component signals. One of these, a simple subtractive operation, can act as an error signal passed between hierarchical processing stages.