p97 Promotes a Conserved Mechanism of Helicase Unloading during DNA Cross-Link Repair

Mol Cell Biol. 2016 Nov 14;36(23):2983-2994. doi: 10.1128/MCB.00434-16. Print 2016 Dec 1.

Abstract

Interstrand cross-links (ICLs) are extremely toxic DNA lesions that create an impassable roadblock to DNA replication. When a replication fork collides with an ICL, it triggers a damage response that promotes multiple DNA processing events required to excise the cross-link from chromatin and resolve the stalled replication fork. One of the first steps in this process involves displacement of the CMG replicative helicase (comprised of Cdc45, MCM2-7, and GINS), which obstructs the underlying cross-link. Here we report that the p97/Cdc48/VCP segregase plays a critical role in ICL repair by unloading the CMG complex from chromatin. Eviction of the stalled helicase involves K48-linked polyubiquitylation of MCM7, p97-mediated extraction of CMG, and a largely degradation-independent mechanism of MCM7 deubiquitylation. Our results show that ICL repair and replication termination both utilize a similar mechanism to displace the CMG complex from chromatin. However, unlike termination, repair-mediated helicase unloading involves the tumor suppressor protein BRCA1, which acts upstream of MCM7 ubiquitylation and p97 recruitment. Together, these findings indicate that p97 plays a conserved role in dismantling the CMG helicase complex during different cellular events, but that distinct regulatory signals ultimately control when and where unloading takes place.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adenosine Triphosphatases / metabolism*
  • Animals
  • Cell Cycle Proteins / metabolism*
  • Chromatin / enzymology
  • DNA Helicases / metabolism*
  • DNA Repair*
  • DNA Replication
  • Ubiquitination
  • Valosin Containing Protein
  • Xenopus Proteins / metabolism
  • Xenopus laevis / genetics*
  • Xenopus laevis / metabolism

Substances

  • Cell Cycle Proteins
  • Chromatin
  • Xenopus Proteins
  • Adenosine Triphosphatases
  • DNA Helicases
  • Valosin Containing Protein