Background: Seasonal influenza infection is primarily caused by circulation of two influenza A strain subtypes and strains from two B lineages that vary each year. Trivalent influenza vaccine (TIV) contains only one of the two B-lineage strains, resulting in mismatches between vaccine strains and the predominant circulating B lineage. Quadrivalent influenza vaccine (QIV) includes both B-lineage strains. The objective was to estimate the cost-utility of introducing QIV to replace TIV in Germany.
Methods: An individual-based dynamic transmission model (4Flu) using German data was used to provide realistic estimates of the impact of TIV and QIV on age-specific influenza infections. Cases were linked to health and economic outcomes to calculate the cost-utility of QIV versus TIV, from both a societal and payer perspective. Costs and effects were discounted at 3.0 and 1.5 % respectively, with 2014 as the base year. Univariate and probabilistic sensitivity analyses were conducted.
Results: Using QIV instead of TIV resulted in additional quality-adjusted life-years (QALYs) and cost savings from the societal perspective (i.e. it represents the dominant strategy) and an incremental cost-utility ratio (ICUR) of €14,461 per QALY from a healthcare payer perspective. In all univariate analyses, QIV remained cost-effective (ICUR <€50,000). In probabilistic sensitivity analyses, QIV was cost-effective in >98 and >99 % of the simulations from the societal and payer perspective, respectively.
Conclusion: This analysis suggests that QIV in Germany would provide additional health gains while being cost-saving to society or costing €14,461 per QALY gained from the healthcare payer perspective, compared with TIV.