It is shown that the self-assembly of diamagnetic molecule submonolayers on a surface can be influenced by magnetic stray field landscapes emerging from artificially fabricated magnetic domains and domain walls. The directed local chemisorption of diamagnetic subphthalocyaninatoboron molecules in relation to the artificially created domain pattern is proved by a combination of surface analytical methods: ToF-SIMS, X-PEEM, and NEXAFS imaging. Thereby, a new method to influence self-assembly processes and to produce patterned submonolayers is presented.