Overexpression of HER2 is one of the major causes of breast cancer, and therefore precise diagnosis of its protein expression level is important. However, current methods estimating the HER2-expression level are insufficient due to problem with the lack of quantification. This might result in a gap between diagnostics and therapeutics targeting HER2. Therefore, a new effective diagnostic method is needed. We developed a new immunohistochemical (IHC) technique with quantum dots (QD)-conjugated trastuzumab using single-particle imaging to quantitatively measure the HER2 expression level. Tissues from 37 breast cancer patients with available detailed clinical information were tested by IHC with QDs (IHC-QD) and the correlation with IHC with 3,3'-diaminobenzidine (DAB), fluorescence in situ hybridization (FISH), and IHC-QD was examined. The number of QD-conjugated trastuzumab particles binding specifically to a cancer cell was precisely calculated as the IHC-QD score. The IHC-QD score in 37 cases was correlated proportionally with the score of HER2 gene copy number as assessed by FISH (R = 0.83). When HER2 positivity was judged to be positive, the IHC-QD score with our cut-off level was exactly concordant with the FISH score with a cut-off value of 2.0. Furthermore, IHC-QDs score and time to progression (TTP) of trastuzumab therapy were well correlated in HER2-positive cases (R = 0.69). Conversely, the correlation between FISH score and TTP was not observed. We developed a precisely quantitative IHC method using trastuzumab-conjugated QDs and single-particle imaging analysis and propose the possibility of using IHC-QDs score as a predictive factor for trastuzumab therapy.
Keywords: Breast cancer; HER2; quantum dot; single-particle imaging; trastuzumab.
© 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.