Theory and Experiment of Binary Diffusion Coefficient of n-Alkanes in Dilute Gases

J Phys Chem A. 2016 Oct 20;120(41):8065-8074. doi: 10.1021/acs.jpca.6b08261. Epub 2016 Oct 10.

Abstract

Binary diffusion coefficients were measured for n-pentane, n-hexane, and n-octane in helium and of n-pentane in nitrogen over the temperature range of 300 to 600 K, using reversed-flow gas chromatography. A generalized, analytical theory is proposed for the binary diffusion coefficients of long-chain molecules in simple diluent gases, taking advantage of a recently developed gas-kinetic theory of the transport properties of nanoslender bodies in dilute free-molecular flows. The theory addresses the long-standing question about the applicability of the Chapman-Enskog theory in describing the transport properties of nonspherical molecular structures, or equivalently, the use of isotropic potentials of interaction for a roughly cylindrical molecular structure such as large normal alkanes. An approximate potential energy function is proposed for the intermolecular interaction of long-chain n-alkane with typical bath gases. Using this potential and the analytical theory for nanoslender bodies, we show that the diffusion coefficients of n-alkanes in typical bath gases can be treated by the resulting analytical model accurately, especially for compounds larger than n-butane.