We studied the effects on platelet function of cells isolated from freshly dissociated human tumor tissues (11 breast carcinomas, 9 colon carcinomas and 1 lymph node metastasis from melanoma) obtained at surgery as compared with cultured human tumor cells: namely, human melanoma 1402 cell line derived from a primary tumor and two lines derived from lymph node metastases (ME 7110/2 and Me 665/1) as well as a human hepatoma cell line (Hep G2). The three melanoma cell lines activated platelets by producing ADP, as evidenced by the inhibitory effect of apyrase and by the direct measurement of the agonist in the supernatants of tumor cell suspensions; this production was much greater by the cells derived from metastases than by the cells derived from the primary tumor. On the other hand, aggregation induced by Hep G2 hepatoma cells was unaffected by apyrase and was inhibited by hirudin or concanavalin A, suggesting that the cells aggregate platelets by producing thrombin, probably through tissue factor activity of the cells themselves. Cells isolated from 16 of the 21 human tumor tissues possessed a potent platelet-aggregating effect, which was not inhibited by apyrase, hirudin or concanavalin A, but was virtually abolished by the cysteine protease inhibitors iodoacetic acid or p-hydroxymercuri-phenylsulfonate. Collectively, our data demonstrate that cells isolated from freshly dissociated tumor tissues activate platelets through tumor-associated cysteine proteinases rather than by the ADP- or thrombin-dependent mechanisms characteristic of cultured human tumor cell lines.