Magnetic core-shell ZnFe2O4/ZnS nanocomposites for photocatalytic application under visible light

J Colloid Interface Sci. 2017 Jan 15:486:136-143. doi: 10.1016/j.jcis.2016.09.066. Epub 2016 Sep 28.

Abstract

Magnetic core-shell ZnFe2O4/ZnS composites were synthesized through a two-step chemical process including the hydrothermal and the co-precipitation methods. The structural characterization revealed that the composites consisted of a layer of ZnS clusters on the surface of ZnFe2O4 nanoparticles. The band gap energy of the composite was estimated to be 2.2eV through the Kubelka-Munk plot, implying the possible application as a photocatalyst under the visible light radiation. The improved photocatalytic efficiency of the ZnFe2O4/ZnS composites was confirmed through the photocatalytic degradation of Methyl Orange. The increased absorption of the visible light and the enhanced separation of the electron-hole pairs due to the relative energy band positions in ZnFe2O4 and ZnS are considered as the main advantages. Additionally, the moderate magnetization of the ZnFe2O4 core insured the easy magnetic collection of the composite materials without affecting the photocatalytic performance. Our results showed that ZnFe2O4-based nanocomposites could be used as an effective and magnetic retrievable photocatalyst.

Keywords: Core-shell; Magnetically retrievable photocatalyst; ZnFe(2)O(4); ZnS.