Objectives: To evaluate the ability of different MRI sequences to detect chondrocalcinosis within knee cartilage and menisci, and to analyze the association with joint degeneration.
Methods: Subjects with radiographic knee chondrocalcinosis (n = 90, age 67.7 ± 7.3 years, 50 women) were selected from the Osteoarthritis Initiative and matched to controls without radiographic chondrocalcinosis (n = 90). Visualization of calcium-containing crystals (CaC) was compared between 3D T1-weighted gradient-echo (T1GE), 3D dual echo steady-state (DESS), 2D intermediate-weighted (IW), and proton density (PD)-weighted fast spin-echo (FSE) sequences obtained with 3T MRI and correlated with a semiquantitative CaC score obtained from radiographs. Structural abnormalities were assessed using Whole-Organ MRI Score (WORMS) and logistic regression models were used to compare cartilage compartments with and without CaC.
Results: Correlations between CaC counts of MRI sequences and degree of radiographic calcifications were highest for GE (rT1GE = 0.73, P < 0.001; rDESS = 0.68, P < 0.001) compared to other sequences (P > 0.05). Meniscus WORMS was significantly higher in subjects with chondrocalcinosis compared to controls (P = 0.005). Cartilage defects were significantly more frequent in compartments with CaC than without (patella: P = 0.006; lateral tibia: P < 0.001; lateral femur condyle: P = 0.017).
Conclusions: Gradient-echo sequences were most useful for the detection of chondrocalcinosis and presence of CaC was associated with higher prevalence of cartilage and meniscal damage.
Key points: • Magnetic resonance imaging is useful for assessing burden of calcium-containing crystals (CaC). • Gradient-echo sequences are superior to fast spin echo sequences for CaC imaging. • Presence of CaC is associated with meniscus and cartilage degradation.
Keywords: Cartilage imaging; Chondrocalcinosis; Magnetic resonance imaging; Musculoskeletal imaging; Osteoarthritis.