Utilizing individual atoms or molecules as functional units in electronic circuits meets the increasing technical demands for the miniaturization of traditional semiconductor devices. To be of technological interest, these functional devices should be high-yield, consume low amounts of energy, and operate at room temperature. In this study, we developed nanodevices called quantized conductance atomic switches (QCAS) that satisfy these requirements. The QCAS operates by applying a feedback-controlled voltage to a nanoconstriction within a stretched nanowire. We demonstrated that individual metal atoms could be removed from the nanoconstriction and that the removed metal atoms could be refilled into the nanoconstriction, thus yielding a reversible quantized conductance switch. We determined the key parameters for the QCAS between the "on" and "off" states at room temperature under a small operating voltage. By controlling the applied bias voltage, the atoms can be further completely removed from the constriction to break the nanowire, generating single-atom nanogaps. These atomic nanogaps are quite stable under a sweeping voltage and can be readjusted with subangstrom accuracy, thus fulfilling the requirement of both reliability and flexibility for the high-yield fabrication of molecular devices.
Keywords: electromigration; molecular devices; molecular electronics; nanogaps; quantized conductance switches; single-atom memory.