The RNA-binding protein LIN-28 was first found to control developmental timing in Caenorhabditis elegans. Later, it was found to play important roles in pluripotency, metabolism, and cancer in mammals. Here we report that a low dosage of lin-28 enhanced stress tolerance and longevity, and reduced germline stem/progenitor cell number in C. elegans. The germline LIN-28-regulated microRNA let-7 was required for these effects by targeting akt-1/2 and decreasing their protein levels. AKT-1/2 and the downstream DAF-16 transcription factor were both required for the lifespan and germline stem cell effects of lin-28. The pathway also mediated dietary restriction induced lifespan extension and reduction in germline stem cell number. Thus, the LIN-28/let-7/AKT/DAF-16 axis we delineated here is a program that plays an important role in balancing reproduction and somatic maintenance and their response to the environmental energy level-a central dogma of the 'evolutionary optimization' of resource allocation that modulates aging.
Keywords: Caenorhabditis elegans; DAF-16; LIN-28; let-7; longevity; reproduction.
© 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.