Background: Evidence suggests that interleukin (IL)-1β is important in the pathogenesis of atherosclerosis and its complications and that inhibiting IL-1β may favorably affect vascular disease progression.
Objectives: The goal of this study was to evaluate the effects of IL-1β inhibition with canakinumab versus placebo on arterial structure and function, determined by magnetic resonance imaging.
Methods: Patients (N = 189) with atherosclerotic disease and either type 2 diabetes mellitus or impaired glucose tolerance were randomized to receive placebo (n = 94) or canakinumab 150 mg monthly (n = 95) for 12 months. They underwent magnetic resonance imaging of the carotid arteries and aorta.
Results: There were no statistically significant differences between canakinumab compared with placebo in the primary efficacy and safety endpoints. There was no statistically significant change in mean carotid wall area and no effect on aortic distensibility, measured at 3 separate anatomic sites. The change in mean carotid artery wall area was -3.37 mm2 after 12 months with canakinumab versus placebo. High-sensitivity C-reactive protein was significantly reduced by canakinumab compared with placebo at 3 months (geometric mean ratio [GMR]: 0.568; 95% confidence interval [CI]: 0.436 to 0.740; p < 0.0001) and 12 months (GMR: 0.56; 95% CI: 0.414 to 0.758; p = 0.0002). Lipoprotein(a) levels were reduced by canakinumab compared with placebo (-4.30 mg/dl [range: -8.5 to -0.55 mg/dl]; p = 0.025] at 12 months), but triglyceride levels increased (GMR: 1.20; 95% CI: 1.046 to 1.380; p = 0.01). In these patients with type 2 diabetes mellitus or impaired glucose tolerance, canakinumab had no effect compared with placebo on any of the measures assessed by using a standard oral glucose tolerance test.
Conclusions: There were no statistically significant effects of canakinumab on measures of vascular structure or function. Canakinumab reduced markers of inflammation (high-sensitivity C-reactive protein and interleukin-6), and there were modest increases in levels of total cholesterol and triglycerides. (Safety & Effectiveness on Vascular Structure and Function of ACZ885 in Atherosclerosis and Either T2DM or IGT Patients; NCT00995930).
Keywords: C-reactive protein; homeostasis model assessment; inflammation; interleukin-1.
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.