Objectives: The objective of this study was to investigate the hepatoprotective effect of licochalcone B (LCB) in a mice model of carbon tetrachloride (CCl4)-induced liver toxicity.
Materials and methods: Hepatotoxicity was induced in mice by a single subcutaneous injection (SC) of CCl4. The LCB was administered orally once a day for seven days (PO) as pretreatment at three doses of 1, 5, and 25 mg/kg/day. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), glutathione disulfide (GSSG), C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed by ELISA. The protein expression degrees of p38 mitogen activated protein kinases (p38) and nuclear factor-k-gene binding (NF-κB) were assayed by western blotting.
Results: CCl4-induced hepatotoxicity was manifested by an increase in the levels of ALT, AST, MDA, IL-6, CRP, and TNF-ɑ, and a decrease in the SOD level and GSH/GSSG ratio in the serum. The histopathological examination of the liver sections revealed necrosis and inflammatory reactions. Pretreatment with LCB decreased the levels of ALT, AST, MDA, GSSG, IL-6, CRP, TNF-ɑ, and the protein expression of p38 and NF-κB, increased the level of SOD and GSH, and normalized the hepatic histo-architecture.
Conclusion: LCB protected the liver from CCl4-induced injury. Protection may be due to inhibition of p38 and NFκB signaling, which subsequently reduced inflammation in the liver.
Keywords: Anti-inflammatory; Antioxidant; Carbon tetrachloride; Hepatotoxicity; Licochalcone B; NF-κB; P38.